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Rectangular and Annular Modal Analyses of Multimode

Waveguide Bends

EZEKIEL BAHAR, SENIOR MEMBER, IEEE, AND GOPALAN GOVINDARAJAN, MEMBER, IEEE

Abstract—Spurious modes in multimode H-plane waveguide
bends of nonuniform curvature are computed on the basis of rec-
tangular and annular waveguide modal analyses. The sets of coupled
ditYerential equations for the wave amplitudes are solved numerically
using both an iterative approach and the Runge-Kutta method. The
advantages and limitations of the different approaches to this prob-
lem are considered in detail.

I. INTRODUCTION

w

AVEGUI DE BENDS capable of supporting several

propagating modes are of considerable practical im-

portance in the design of high-powered microwave

systems [1]. Several methods have been developed for the

analysis of waveguide bends [2 ]– [4]. These methods result in

the conversion of Maxwell’s equations into infinite sets of

coupled transmission-line equations referred to as ‘(generalized

telegraphist’s equations. J> The dependent variables in these

first-order coupled differential equations are the forward and

backward waveguide mode amplitudes.

For the purpose of the analysis it is necessary to express

the transverse components of the electric and magnetic fields

at any cross section of the nonuniform waveguide in terms of a

complete modal expansion. For the case of waveguide bends

of rectangular cross section, it is possible to express the fields

at any cross section, normal to the center line of the wave-

guide, in terms of local rectangular waveguide modes or in

terms of local annular waveguide modes [A].

The solutions for the electromagnetic (EM) fields at any

cross section do not depend on the particular modal expansion

used. However, the sets of coupled differential equations for

the wave amplitudes depend upon the modal expansion used

in the analysis. Thus the solutions for the mode amplitudes,

based upon the rectangular and annular modal analyses, are

different except at bend cross sections where the center line

radius of curvature is infinite and the two modal expansions

merge.

The modal equation for rectangular waveguides can be

readily solved. However, the modal equation for annular

waveguides, which involves Bessel functions, needs to be

solved numerically with the aid of a digital computer. Al-

though it is easier to compute the coupling coefficients derived

using the rectangular modal analysis, it is shown that when

operating over a wide range of waveguide bend parameters,

the analysis based on the annular modal expansion is more

efficient.

The basic reasons for this are twofold. First, using the

local annular modal analysis, the coupling into the spurious
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Fig. 1. II-plane waveguide bend with sinusoidally shaped center line.

modes along the length of the waveguide bend is smaller. This

permits the use of simple iterative approaches to the solution

of the coupled differential equations over a much wider range

of waveguide bend parameters when the annular modal anal-

ysis is used. Secondly, when the annular modal analysis is

used, the significant spurious modes are bunched more tightly

about the incident mode. As a result, fewer spurious modes

need to be considered.

~-plane waveguide bends with sinusoidally shaped center

lines and uniform rectangular cross sections are considered in

this paper in detail, in order to illustrate the advantages and

the limitations of the different approaches to this problem.

The numerical results obtained from two independent ap-

proaches to these problems provide a valuable means to check

out the results before a model is constructed.

II. FORMULATION OF THE PROBLEM

The center lines of the ~-plane bends considered in this

paper are given by the expression

where .$is measured along the straight lines connecting the in-

put and output ports of the waveguide bends (see Fig. 1), and

w is one of the design parameters. Equation (1) describes 90°

bends with infinite radii of curvature at the input and output

ports. The uniform rectangular cross sections of the bends are

21zXd. The bends are assumed to be excited by TE~,o modes

only. For ~-plane bends the TEm, o modes couple with the

TE~,o modes only (m, n =1, 2, 3, , . . ) [4]. Thus the design

parameter 2Jz (width of the cross section) determines the num-

ber of propagating modes that may be excited in the bend.

Since mode coupling is independent of the parameter d

(height of the cross section), d is left unspecified.

At any cross section of the waveguide bend the transverse

components of the ENI fields can be expressed in terms of
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complete rectangular or annular modal expansions. Thus E.

and Hv (see Fig. 1) are expressed as follows in terms of the

forward and backward wave amplitudes G and bn, respec-

tively:

Es = (afi+bfi)tfi IIu = Y.(a. – b.)+n. (2)

Forthe rectangular modes the basis functions are

4.(Y) = sin [k.(Y+h)]/(Ynh) 1f2, –k<y~h (3a)

and for the annular modes they are given in terms of Hankel

functions:

4.(Y) = A.[H,.(’)(kr)H,. (2)(ka) – Hpnc’j(ka)H,n(2 J(kr)],

a<r<b (3b)

in which a = R —h, b = R+?z, k k the free-space wavenumber,

and R k the local radius of *curvature of the center line. The

constant Am is

( )

7rk R.C. (R(C.(a) 112
An=z

h YnR

c.(r) = [1 – (1%’ – l/4)/(kr)’]’/’. (3C)

The modal equation for the rectangular modes is ~m(?z) = O;

thus kn = mr/2h. The modal equation for annular modes

+.(b) = O k solved numerically for the values of the mode

numbers v.. The propagation coefficients (along the center

line) are /3. = (ka – kn2) 1/2 and f?. = v./R for the rectangular and

annular modes, respectively. The nth-mode wave admittances

for rectangular and annular modes are Y.= Y@n/k and

Y.= Y@.R/kr = Y. RR/r, in which Y is the free-space wave

admittance.

The coupled differential equations for the wave amplitudes

are

in which x is the distance measured along the center line of the

bend. The transmission scattering (coupling) coefficients for

the rectangular modes vanish for n – m even. For n — m odd

they are

dC&AB dSn~BA

(-)

— ‘i4?’m’z(p.&-l/2 1’—
dx – dx = (n’ – m’)%’ R

“ (Pn + A)’. (5a)

For the annular modes they are for n – m both even and odd

dS%wAB dSm~BA
— = : (C.m – cm.)

d% = dx
(5b)

YnBkR %’ + 3vm’ – 1
——C.m = ~vn2 _ .m2) [Vn

2 – (% + 1)2] [Vnz — (Vm – 1)2]

. [kr~n’~~’]:~- , n #m. (SC)

In the following section we derive numerical solutions to (4)

for both the rectangular and annular modal analyses. Since

the basis functions for both analyses merge at the input and

output ports of the bend, the mode amplitudes at these ports

must also be the same in order to satisfy (2). It is interesting

to point out that even though the coupling coefficients for the

rectangular modes vanish when m —n is even, any given inci-

dent mode will excite both even and odd numbered modes [4].

II 1. ILLUSTRATIVE EXAMPLES

The radius of curvature R($) of the bend center line defined

by q(~), (1), is minimum at the center where

R m,. = [1 + (??’)’]’/’//’ = W/m (6a)

and the primes denote differentiation with respect to ~. In this

work we have considered two cross-section widths

2h/i = 1.75 and 2h/A = 2. (6b)

The minimum value for w considered is w/21z = 6; thus at any

cross section of the bend, X/R <0.3. In Fig. 2(a) and (b) the

values of &Jk (n= 1, 2, 3) are plotted as functions of X/R for

the annular modes. The values for &Jk for rectangular wave-

guides can be obtained from these figures by setting A/R= O.

It is interesting to note that for small center line radii of

curvature bends, the dominant annular mode (n= 1) becomes

a slow wave (the phase velocity is smaller than the free-space

velocity of the wave (31/k> 1). This corresponds to the well-

known phenomenon of the earth detached modes in the earth–

ionosphere waveguide [5], [6].
Since the radius of curvature (6a) is an explicit function of

.$rather than x (the distance along the center line), it is simpler

to express the wave amplitudes as functions of &. To this end

we multiply (4) by dx/d&, where

: = (1 + (n’)2) 1/’. (7)

When the power coupled into the spurious modes at any

cross section of the bend is small, a simple iterative approach

may be used to solve (4) for the wave amplitudes.

Thus for the mth incident mode we get the Wentzel–

Kramers–Brillouin- (WKB) type solution

am(~) = am(0) exp {-i~’(&n:)dL*}.

The spurious mode wave amplitudes are

(8a)

(8b)

In addition to the above iterative solutions, the coupled dif-

ferential equations have also been solved numerically using a

fifth-order Runge–Kutta method. Here we have neglected

reflections (b,, = O), and assumed that the incident mode corre-

sponds to m = 1 and the spurious modes are n = 2 and 3. For

convenience we set al(0) = 1. In Fig. 3(a) and (b), the Runge-

Kutta solutions for I al(~)] are plotted as functions of &/w

for w/2h = 14 and w/2h = 6, respectively, with 2h/h = 1.75. The

solutions are given for the rectangular and annular modal

anal yses. The corresponding iterative solutions are [ al(~) I = 1.

Clearly, the rectangular and annular modal analyses are in
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(b)

Fig. 2. Propagation coefficient for annular modes @n.
(a) 2h/h= 1.75. (b) 2h/h= 2.0.

(a)

Fig. 3. Amplitude of incident mode Ial(~) I = lAl(~) \ ; 2h/h = 1.75.
(a) w/2h = 14. (b) w/2h = 6; Runge-Kutta solutions. ■ Rectangular.
0 Annular.

good agreement for &= w; however, I al(~) \~in is smaller when

the rectangular modal analysis is used due to stronger mode

coupling.

In Fig. 4(a) and (b), ] a~(~) I is plotted as a function of i/w
for w/2h = 14 and w/2h = 6, respectively. Similarly, in Fig.

5(a) and (b), ] %(~)\ is plotted for w/2h = 14 and w/21z = 6.

For all these plots, 2h/k = 1.75. In Fig. 4 both the iterative

and the Rung& Kutta solutions are provided for the rectangu-

lar as well as the annular modal analyses.

For w/2h = 14, [Fig. 4(a)] the iterative solutions are in

good agreement with the Runge–Kutta solution (especially

when the annular modal analysis is used), As pointecl out in

Section II, I an($)] depends on the particular modal analysis

used, except at the ports of the waveguide bend where these

values merge.

When zu/2h = 6 [Fig. 4(b)], we find that the iterative solu-

tion is in good agreement with the Rung~Kutta solution only

when the annular modal analysis is used. The iterative solu-

tion based on the rectangular modal analysis fails. This is due

to the relatively large amount of power coupled into the

spurious modes. From Fig. 5 it is clear that for w/2h =, 14, the

presence of the third mode could be entirely ignored when the

annular modal analysis is used; thus only two modes need to

be considered in solving (4). A similar comparison of I a,(~) I

for w/21z = 6 (Fig. 5) shows that, in general, the mi~ximum

value of I a~(~) I is larger when the rectangular modal analysis

is used. In Fig. 5 only the Runge–Kutta solutions are given.

In Fig. 6(a), ~az(w) ] is plotted as a function of w/2h for

2h/k = 1.75. Four plots are given—the iterative and Runge–

Kutta solutions for both the rectangular and annular modal

analysis. All four curves for I a~(w) I are in good agreement for

w/21z >12. The Runge-Kutta solution for the rectangular

modal analysis is in agreement with both curves corresponding

to the annular modal analysis, even for w/2h <12. The itera-

tive solution, however, is obviously incorrect for w/2h <12

when the rectangular modal analysis is used. This is due to the

large amount of power coupled into the spurious modes. In

Fig. 6(b), ] a,(w) I is plotted as a function of w/2h for ~!h/k = 2.

Here the iterative and Runge-Kutta solutions using the an-

nular modal analysis are given. Note that in this case when

I a,(w)] >0.3, the iterative solution is not in agreement with

the Runge–Kutta solution.

In order to enhance our physical understanding of the

coupling phenomena, we study in detail the case w/2h = 14,

21z/A = 1,75. For clarity of presentation we define the expres-

sion for An(~) as follows:

A.($) = an($) exp {-ifgw~.~} (9a)

Thus A.(w) =afi(w), and I An(g) I = ~an(~) 1. The phascm-

AA, = A,(~ + At) – A,(i) (9b)

represents the contribution to the spurious mode az(w) from

the element of the waveguide bend that lies between t and

~ +A~. In Fig. 7(a) and (b), respectively, we have plotted the
iterative and Runge–Kutta solutions for A~(&) using the rec-

tangular modal analysis. In Fig, 8(a) and (b), respectively, we

have plotted the iterative and RungeKutta solutions for

AZ(~) based on the annular modal analysis. At the origin, $=0,

and at the end of the curve, .$= w. Az(&) is the line that joins

the origin to any point on the curve. Clearly, the values of

AZ(W) [and az(w) ] are in good agreement on all four curves
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f-’l

Fig. 4. Amplitude of spurious mode la2(&)l=\A2(Ol; 2h/X=l.75.

(a) w/2h = 14. (b) w/2h = 6. ● Rectangular; iterative. ■ Rectangular;
Runge–Kutta. A Annular; iterative. 0 Annular; Rung&Kutta.

(a)

A
l\

(b)

Fig. 5. Amplitude of spurious mode la3(01=l=48(E)l; zh/~=1.7S.
(a) w/2h=i4. (b) w/2h=6; Runge–Kutta solutions. m Rectangular.
0 Annular.
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Fig. 7. Phasor diagram for A2(.5) (3.5a). Rectangular modal analysis.
(a) Iterative solution. (b) Runge-Kutta solution.
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(a)
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(b)

Fig. 8. Phasor diagram for Aj($) (3.5a). Annular modal analysis,

(a) Iterative solution. (b) Runge-Kutta wdution.

(Figs. 7 and 8). However, [ Az($) [~a~ is much larger when the

rectangular modal analysis is used. Using the annular modal

analysis (Fig. 8), I /42($) 1~.~ <0,1. Thus less than 1 percent of

the incident power is coupled into the spurious mode at any

cross section of the bend. As a result, the iterative solution

[Fig. 8(a) ] is hardly distinguishable from the Runge-Kutta

solution [Fig. 8(b) ]. On the other hand, when the rectangular

modal analysis is used, I Aj(~) Imax =0.3. Thus near the center

of the bend about 10 percent of the incident power is coupled

into the spurious mode. We see that the largest discrepancies

between the iterative and Runge–Kutta solutions lie near the

center of the bend where the spurious mode amplitude is

largest.

Since dq/d~ and d%l/d~3 vanish at $= w/2, the coupling

coefficient Cn~ (SC) changes its sign at ~ = w/2. This is reflected

as an abrupt change in the direction of the curve A ~(~) at the

center of the bend.

IV. CONCLUDING REMARKS

The design of multimode H-plane bends is considered in

detail using two distinct analytical approaches to the problem.

The coupled differential equations obtained from the rec-

tangular and annular modal analysis are solved numerically

using both an iterative method as well as the Runge–Kutta

method.

To obtain the iterative solutions, the computer time re-

quired is about the same whether the rectangular or annular

modal analysis is used. However, the range of the design pa-

rameters for which the iterative solution is valid depends on

the maximum power coupled into the spurious modes. Hence,

the iterative solutions are generally valid over a wider range

of the design parameters when the annular modal analysis is

used.

The Runge–Kutta solution based on the annular modal

analysis took about five times longer to execute when com-

pared with the corresponding iterative solution. On the other

hand, the Runge=Kutta solution based on the rectangular

modal analysis took about eight times longer to execute when

compared with the corresponding iterative solution. When the

annular modal analysis is used, the maximum spurious mode

amplitudes are smaller; thus fewer spurious modes need to be

considered in order to solve the coupled differential equa-

tions for the wave amplitudes (4).

The need to suppress spurious modes is a principal factor to

be considered when waveguide bends are designed. Thus for a SW

waveguide bend with a sinusoidally shaped center line (1), cor-

responding to w/2L = 14 and 2k/X = 1.75, 20 log I a,(-L)/a, (L) I

= 30. Since in this case, the spurious mode amplitude is 30 dB

below the principal mode amplitude, mode filters are not

needed to suppress the spurious modes. Furthermore, Fig.

6(a) shows that any increase in the size of the waveguide bend

does not significantly improve its performance. The programs

used to compute the numerical data in this paper will be

available from the authors upon request.
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