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Rectangular and Annular Modal Analyses of Multimode
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Abstract=—=Spurious modes in multimode H-plane waveguide
bends of nonuniform curvature are computed on the basis of rec-
tangular and annular waveguide modal analyses. The sets of coupled
differential equations for the wave amplitudes are solved numerically
using both an iterative approach and the Runge-Kutta method. The
advantages and limitations of the different approaches to this prob-
lem are considered in detail.

I. INTRODUCTION
KQ X Y AVEGUIDE BENDS capable of supporting several

propagating modes are of considerable practical im-

portance in the design of high-powered microwave
systems [1]. Several methods have been developed for the
analysis of waveguide bends [2]-[4]. These methods result in
the conversion of Maxwell’s equations into infinite sets of
coupled transmission-line equations referred to as “generalized
telegraphist’s equations.” The dependent variables in these
first-order coupled differential equations are the forward and
backward waveguide mode amplitudes.

For the purpose of the analysis it is necessary to express
the transverse components of the electric and magnetic fields
at any cross section of the nonuniform waveguide in terms of a
complete modal expansion. For the case of waveguide bends
of rectangular cross section, it is possible to express the fields
at any cross section, normal to the center line of the wave-
guide, in terms of local rectangular waveguide modes or in
terms of local annular waveguide modes [4].

The solutions for the electromagnetic (EM) fields at any
cross section do not depend on the particular modal expansion
used. However, the sets of coupled differential equations for
the wave amplitudes depend upon the modal expansion used
in the analysis. Thus the solutions for the mode amplitudes,
based upon the rectangular and annular modal analyses, are
different except at bend cross sections where the center line
radius of curvature is infinite and the two modal expansions
merge.

The modal equation for rectangular waveguides can be
readily solved. However, the modal equation for annular
waveguides, which involves Bessel functions, needs to be
solved numerically with the aid of a digital computer. Al-
though it is easier to compute the coupling coefficients derived
using the rectangular modal analysis, it is shown that when
operating over a wide range of waveguide bend parameters,
the analysis based on the annular modal expansion is more
efficient.

The basic reasons for this are twofold. First, using the
local annular modal analysis, the coupling into the spurious
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Fig. 1. H-plane waveguide bend with sinusoidally shaped center line.

modes along the length of the waveguide bend is smaller. This
permits the use of simple iterative approaches to the solution
of the coupled differential equations over a much wider range
of waveguide bend parameters when the annular modal anal-
ysis is used. Secondly, when the annular modal analysis is
used, the significant spurious modes are bunched more tightly
about the incident mode. As a result, fewer spurious modes
need to be considered.

H-plane waveguide bends with sinusoidally shaped center
lines and uniform rectangular cross sections are considered in
this paper in detail, in order to illustrate the advantages and
the limitations of the different approaches to this problem.
The numerical results obtained from two independent ap-
proaches to these problems provide a valuable means to check
out the results before a model is constructed.

II. FORMULATION OF THE PROBLEM

The center lines of the H-plane bends considered in this
paper are given by the expression

(&) = (w/x) sin (n¢/w),

where £ is measured along the straight lines connecting the in-
put and output ports of the waveguide bends (see Fig. 1), and
w is one of the design parameters. Equation (1) describes 90°
bends with infinite radii of curvature at the input and output
ports. The uniform rectangular cross sections of the bends are
2k Xd. The bends are assumed to be excited by TE,, ¢ modes
only. For H-plane bends the TE,,  modes couple with the
TE, o modes only (m, n=1, 2,3, - - -) [4]. Thus the design
parameter 2/ (width of the cross section) determines the num-
ber of propagating modes that may be excited in the bend.
Since mode coupling is independent of the parameter &
(height of the cross section), d is left unspecified.

At any cross section of the waveguide bend the transverse
components of the EM fields can be expressed in terms of

0<t<w (1)
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complete rectangular or annular modal expansions. Thus E,
and H, (see Fig. 1) are expressed as follows in terms of the
forward and backward wave amplitudes @, and b,, respec-
tively:

For the rectangular modes the basis functions are

¥a(y) = sin [k(y + D]/ (Yul)'2, —h<y<h (33

and for the annular modes they are given in terms of Hankel

functions:

"pn(r) = An[Hm(l)(kr)Hm(z)(ka) - an(l)(ka)Hm(z)(kr)]y
a<r<b (3b)

H, = YV.(a. —

in which a=R—#, b=R+1%, k is the free-space wavenumber,
and R is the local radius of «curvature of the center line. The
constant 4, is

- <RaC,,(R(Cn(a)>1/2
4 LY g

Ca(r) = [t — (m? — 1/4)/(kn)?] 2, (39)

The modal equation for the rectangular modes is ¥, (k) =0;
thus k,=wnm/2k. The modal equation for annular modes
¥, (b) =0 is solved numerically for the values of the mode
numbers »,. The propagation coefficients (along the center
line) are B, = (k2 —k,2)Y2 and B, =v,/R for the rectangular and
annular modes, respectively. The nth-mode wave admittances
for rectangular and annular modes are Y,= ¥YB,/k and
Vo= YB.,R/kr=Y,rR/r, in which ¥ is the free-space wave
admittance.

The coupled differential equations for the wave amplitudes
are

—dan B i <dSntA + dSntB b > (4 )
— Ppy = (2% m a
dx me1 \ dx dx
- dbn . hd dSnmAB dSn’mAA
dx " dx dx

in which x is the distance measured along the center line of the
bend. The transmission scattering (coupling) coefficients for
the rectangular modes vanish for #n—m even. For n—m odd
they are

dSnmAB dSntA
dx B dx

'—i4nm(6n6m)_1/2 <£>
(n2 — m2)271'2 R
: (Bn + an)2- (Sa)

For the annular modes they are for n—m both even and odd

AT AT |

= - Cnm - Cmn Sb
dx dx 2 ( ) (5b)
V.rER 2 4 3v,2 — 1
e (v2 — vn?) [Vn2 — (v + 1)2] [1/,,2 — (v, — 1)2]
» AR
.72/ p— n = m. (5¢)
dx

In the following section we derive numerical solutions to (4)
for both the rectangular and annular modal analyses. Since
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the basis functions for both analyses merge at the input and
output ports of the bend, the mode amplitudes at these ports
must also be the same in order to satisfy (2). It is interesting
to point out that even though the coupling coefficients for the
rectangular modes vanish when m—n is even, any given inci-
dent mode will excite both even and odd numbered modes [4].

ITI. ILLUSTRATIVE EXAMPLES

The radius of curvature R(§) of the bend center line defined
by 7(€), (1), is minimum at the center where

Row = [1 4+ @)1/ = w/n (6a)

and the primes denote differentiation with respect to £. In this
work we have considered two cross-section widths

2m/h = 1.75 and 2h/A = 2. (6b)

The minimum value for w considered is w/2k =6; thus at any
cross section of the bend, A\/R<0.3. In Fig. 2(a) and (b) the
values of 8,/k (n=1, 2, 3) are plotted as functions of \/R for
the annular modes. The values for 8,/k for rectangular wave-
guides can be obtained from these figures by setting A/R=0.
It is interesting to note that for small center line radii of
curvature bends, the dominant annular mode (#=1) becomes
a slow wave (the phase velocity is smaller than the free-space
velocity of the wave §;/k>1). This corresponds to the well-
known phenomenon of the earth detached modes in the earth—
ionosphere waveguide [5], [6].

Since the radius of curvature (6a) is an explicit function of
£ rather than x (the distance along the center line), it is simpler
to express the wave amplitudes as functions of £ To this end
we multiply (4) by dx/df, where

= 1+ (@)Hre 7
i n . (N

When the power coupled into the spurious modes at any
cross section of the bend is small, a simple iterative approach
may be used to solve (4) for the wave amplitudes.

Thus for the mth incident mode we get the Wentzel—
Kramers—Brillouin- (WKB) type solution

in(®) = an(0) exp i / E(Bm j—f) . s

The spurious mode wave amplitudes are

a(§) = — an(0) exp {_iﬁé(ﬁnj—;‘dg*} fos

7/

dSntA
mdx

{ ( dx d} dx g ah
exp zo(ﬁm B”>dg£ ds*s' (8b)
In addition to the above iterative solutions, the coupled dif-
ferential equations have also been solved numerically using a
fifth-order Runge-Kutta method. Here we have neglected
reflections (b, =0), and assumed that the incident mode corre-
sponds to m=1 and the spurious modes are n=2 and 3. For
convenience weset a;(0) = 1. In Fig. 3(a) and (b), the Runge~
Kutta solutions for |ai(§)| are plotted as functions of &/w
for w/2h =14 and w/2k =6, respectively, with 24/X=1.75. The
solutions are given for the rectangular and annular modal
analyses. The corresponding iterative solutions are | a.(§)| =1.
Clearly, the rectangular and annular modal analyses are in



BAHAR AND GOVINDARAJAN: ANALYSES OF WAVEGUIDE BENDS

8. n=1
-f M
e . bbb
&
ot
MW
z
St
=
o
St
=3
o
=z
.00 0.4 0,08 .12 o.16 0.20 [ DETINC: -
]
(a)
=1
g M
afl‘
~
]
< M
Ed
ot
»=3.
73
a2t
»
> e ¥
% w e [R] 9.12 0.6 ) FEN o as 0.32

(b)

Fig. 2. Propagation coefficient for annular modes 8.
(@) 2h/A=1.75. (b) 2h/A=2.0.
=1
)
<8
- % W MAREE S S,
j=]
8
]
“b.00 6.13 .25 D 0,50 0.563 0.75 ves £ Lo
W
(@)
-
=
< 8
w1
o
ct-j.UD Qi3 0.25 033 Q.50 063 0175 0 28 E 1.00
W
(b)
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good agreement for £=w; however, |a1(£) | min is smaller when
the rectangular modal analysis is used due to stronger mode
coupling.

In Fig. 4(a) and (b), |a:(8)] is plotted as a function of &/w
for w/2h=14 and w/2h=6, respectively. Similarly, in Fig.
5(a) and (b), |as(§)] is plotted for w/2h=14 and w/2h=6.
For all these plots, 2k/A=1.75. In Fig. 4 both the iterative
and the Runge-Kutta solutions are provided for the rectangu-
lar as well as the annular modal analyses.

For w/2h=14, [Fig. 4(a)] the iterative solutions are in
good agreement with the Runge-Kutta solution (especially
when the annular modal analysis is used). As pointed out in
Section II, |aa(¥)| depends on the particular modal analysis
used, except at the ports of the waveguide bend where these
values merge.

When w/2h=6 [Fig. 4(b)], we find that the iterative solu-
tion is in good agreement with the Runge—Kutta solution only
when the annular modal analysis is used. The iterative solu-
tion based on the rectangular modal analysis fails. This is due
to the relatively large amount of power coupled into the
spurious modes. From Fig. 5 it is clear that for w/2k =14, the
presence of the third mode could be entirely ignored when the
annular modal analysis is used; thus only two modes need to
be considered in solving (4). A similar comparison of |a;(£)|
for w/2h=6 (Fig. 5) shows that, in general, the maximum
value of |as(£)| is larger when the rectangular modal analysis
is used. In Fig. 5 only the Runge—Kutta solutions are given.

In Fig. 6(a), |as(w)]| is plotted as a function of w/2k for
2h/N=1.75. Four plots are given—the iterative and Runge—
Kutta solutions for both the rectangular and annular modal
analysis. All four curves for | a;(w)| are in good agreement for
w/2h >12. The Runge-Kutta solution for the rectangular
modal analysis is in agreement with both curves corresponding
to the annular modal analysis, even for w/2h <12. The itera-
tive solution, however, is obviously incorrect for w/2k <12
when the rectangular modal analysis is used. This is due to the
large amount of power coupled into the spurious modes. In
Fig. 6(b), |ax(w)| is plotted as a function of w/2k for 2k/A=2.
Here the iterative and Runge-Kutta solutions using the an-
nular modal analysis are given. Note that in this case when
| a2(w)| >0.3, the iterative solution is not in agreement with
the Runge—Kutta solution.

In order to enhance our physical understanding of the
coupling phenomena, we study in detail the case w/2h =14,
2h/A=1.75. For clarity of presentation we define the expres-
sion for 4,(£) as follows:

(v dx
4@ =a@ew {-i [ o
¢ dE
Thus A, (w) = a,(w), and | 4,(8)| = | a.(£)|. The phasor
AAy = Ax(t + AF) — Ax(8) (9b)

represents the contribution to the spurious mode aq(w) from
the element of the waveguide bend that lies between § and
£4AEL. In Fig. 7(a) and (b), respectively, we have plotted the
iterative and Runge—Kutta solutions for 4,(§) using the rec-
tangular modal analysis. In Fig. 8(a) and (b), respectively, we
have plotted the iterative and Runge-Kutta solutions for
As(£) based on the annular modal analysis. At the origin, £=0,
and at the end of the curve, £=w. 4,(§) is the line that joins
the origin to any point on the curve. Clearly, the values of
As(w) [and ax(w)] are in good agreement on all four curves
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(Figs. 7 and 8). However, | 45(£) [max is much larger when the
rectangular modal analysis is used. Using the annular modal
analysis (Fig. 8), | 42(£)|max <0.1. Thus less than 1 percent of
the incident power is coupled into the spurious mode at any
cross section of the bend. As a result, the iterative solution
[Fig. 8(a)] is hardly distinguishable from the Runge-Kutta
solution [Fig. 8(b)]. On the other hand, when the rectangular
modal analysis is used, | 43(8) [max ~0.3. Thus near the center
of the bend about 10 percent of the incident power is coupled
into the spurious mode. We see that the largest discrepancies
between the iterative and Runge—Kutta solutions lie near the
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center of the bend where the spurious mode amplitude is
largest.

Since dn/df and d%/dE® vanish at £=w/2, the coupling
coefficient Cpy, (5c) changes its sign at £=w/2. This is reflected
as an abrupt change in the direction of the curve 4.(§) at the
center of the bend.

IV. CoNCLUDING REMARKS

The design of multimode H-plane bends is considered in
detail using two distinct analytical approaches to the problem.
The coupled differential equations obtained from the rec-
tangular and annular modal analysis are solved numerically
using both an iterative method as well as the Runge-Kutta
method.

To obtain the iterative solutions, the computer time re-
quired is about the same whether the rectangular or annular
modal analysis is used. However, the range of the design pa-
rameters for which the iterative solution is valid depends on
the maximum power coupled into the spurious modes. Hence,
the iterative solutions are generally valid over a wider range
of the design parameters when the annular modal analysis is
used.

The Runge—Kutta solution based on the annular modal
analysis took about five times longer to execute when com-
pared with the corresponding iterative solution. On the other
hand, the Runge-Kutta solution based on the rectangular
modal analysis took about eight times longer to execute when
compared with the corresponding iterative solution. When the
annular modal analysis is used, the maximum spurious mode
amplitudes are smaller; thus fewer spurious modes need to be
considered in order to solve the coupled differential equa-
tions for the wave amplitudes (4).

The need to suppress spurious modes is a principal factor to
be considered when waveguide bends are designed. Thus for a 90°
waveguide bend with a sinusoidally shaped center line (1), cor-
responding to w/2k =14 and 2k/\=1.75, 20 log | az(L)/a:(L)|
= 30. Since in this case, the spurious mode amplitude is 30 dB
below the principal mode amplitude, mode filters are not
needed to suppress the spurious modes. Furthermore, Fig.
6(a) shows that any increase in the size of the waveguide bend
does not significantly improve its performance. The programs
used to compute the numerical data in this paper will be
available from the authors upon request.
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